code nalysisDocumentation
Release 0.1.5

Stefan Braun

Apr 24, 2021

CONTENTS:

1 code_analysis
1.1 Features. e e e
1.2 CreditS . . . o . o e e e e e e e e e e e e e e e e e e
2 Installation
2.1 Stablerelease L e e e e e e e
2.2 FrOM SOUICES . .« v v v v v i e e e e e e e e e e e e e e e e e e e
3 Usage
3.1 gJava_call_tree L. e e e e e e e e
3.2 java_dependencies i e e e e e e
3.3 python_dependencies e e
4 Technical Specification
4.1 Javacalltrees L e e e e e e e
42 Javadependencies it e
4.3 Pythondependencies o i it e e e e e e e e e e e
5 code_analysis
5.1 code_analysis package L e e e e e e e e e
6 Contributing
6.1 Types of Contributions e e e e e
6.2 GetStarted! L L e
6.3 Pull Request Guidelines i i i e e e e e e
6.4 TIPS . . . o e e e e e
6.5 Deploying oL e e e e e
7 History
7.1 0.1.0(2021-04-04) L e
7.2 0.1.3(2021-04-05) o e
8 Indices and tables
Python Module Index
Index

0N 93 WD L D w W DN =

o

11
11
12
13
13
13

15
15
15

17

19

21

CHAPTER
ONE

CODE_ANALYSIS

Analyze source code dependencies and call trees in Neo4j.
¢ Free software: MIT license

e Documentation: https://code-analysis.readthedocs.io.

1.1 Features

This project provides generators for Cypher code for import into Neo4J from call tree and package dependencies.
Some of these generators rely on external tools to provide their ingoing data.

Static calltrees of Java code can be created with java-callgraph, which can be found on GitHub: https://github.com/
gousiosg/java-callgraph.

Dependencies of Java packages can be determined using JDepend, which can also be found on GitHub: https://github.
com/clarkware/jdepend.

Python dependencies are determined using the compiler and AST (Abstract Syntax Tree) with a tool provided in this
project.

1.1.1 Generating Cypher for a Java call tree

Create the call tree using java-callgraph and save it into a file, e.g., java_call_tree_input.txt. Run:

java_call_tree java_call_tree_input.txt > calltree-cypher.txt

calltree-cypher.txt contains two Cypher statements, one to insert all classes into a Neo4j database, and another to insert
the call relations on method level. You can just copy each statement and paste it into the Neo4]j browser.

The database schema looks like this::

(:Class)—-[:uses]—>(:Class)
(:Method)-[:calls]—>(:Method)

https://pypi.python.org/pypi/code_analysis
https://travis-ci.org/stbraun/code_analysis
https://code-analysis.readthedocs.io/en/latest/?badge=latest
https://code-analysis.readthedocs.io
https://github.com/gousiosg/java-callgraph
https://github.com/gousiosg/java-callgraph
https://github.com/clarkware/jdepend
https://github.com/clarkware/jdepend

code,nalysisDocumentation, Release(0.1.5

1.1.2 Generating Cypher code for Java dependencies

Create dependencies using JDepend and save it in a file, e.g., java_depend.txt.

Run following command::

’java_dependencies java_depend.txt > java_depend.cypher ‘

Now you can copy the Cypher statements stored in java_depend.cypher and paste it into the Neo4j browser.

The database schema looks like this::

’(:Package)f[:depends_on]7>(:Package) ‘

To check for cycles you may run the query::

MATCH (p:Package)-[rl:depends_on]->(g:Package)-[r2:depends_on]-> (p:Package)
RETURN p, g, rl, r2

It helps to switch off the default setting, which shows all relations, in the browser settings.

1.1.3 Generating Cypher code for Python dependencies

Determination of dependencies and generation of Cypher code are done in one step in this case::

python_dependencies <path to your package> > python-deps.cypher

The tool compiles the code and walks the AST looking for import statements. Then it generates Cypher code modelling
the relationships between the packages.

The database schema looks like this::

(:Package) —[:contains]—> (:Module)
(:Module)—-[:uses]—> (:Module)

1.2 Credits

This package was created with Cookiecutter and the stbraun/cookiecutter-pypackage project template based on
audreyr/cookiecutter-pypackage.

2 Chapter 1. code_analysis

https://github.com/audreyr/cookiecutter
https://github.com/stbraun/cookiecutter-pypackage.git

CHAPTER
TWO

INSTALLATION

2.1 Stable release

To install code_analysis, run this command in your terminal:

’$ pip install code_analysis

This is the preferred method to install code_analysis, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for code_analysis can be downloaded from the Github repo.

You can either clone the public repository:

’$ git clone git://github.com/stbraun/code_analysis

Or download the tarball:

’$ curl -OL https://github.com/stbraun/code_analysis/tarball/master

Once you have a copy of the source, you can install it with:

’$ python setup.py install

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/stbraun/code_analysis
https://github.com/stbraun/code_analysis/tarball/master

code,nalysisDocumentation, Release(.1.5

4 Chapter 2. Installation

CHAPTER
THREE

USAGE

3.1 java_call_tree

To generate Cypher code first generate a call tree with java-callgraph. Xou can download it from GitHub: https:
//github.com/gousiosg/java-callgraph. Then feed the output of java-callgraph into java_call_tree::

java —jar javacg-0.1-SNAPSHOT-static.jar <your Jjar> <optional jars> > output.txt
java_call_tree output.txt > calltree.cypher

Now you can paste the content of calltree.cypher into the Neo4j browser of your database.

3.2 java_dependencies

First generate a dependency file with JDepend. You can download it from GitHub: https://github.com/clarkware/
jdepend. Then feed the output into java_dependencies::

java jdepend.xmlui.JDepend —-file jdepend_output.txt <path to Java project>
java_dependencies jdepend_output.txt > dependency.cypher

Now paste the content of dependency.cypher into the Neo4j browser to import your dependencies. You can add as
many Java projects as you need.

3.3 python_dependencies

Just point pyython_dependencies to the package you want to analyze::

’python_dependencies <some package> > dependencies.cypher

Now paste the content of dependency.cypher into the Neo4j browser to import your dependencies.

https://github.com/gousiosg/java-callgraph
https://github.com/gousiosg/java-callgraph
https://github.com/clarkware/jdepend
https://github.com/clarkware/jdepend

code,nalysisDocumentation, Release(.1.5

6 Chapter 3. Usage

CHAPTER
FOUR

TECHNICAL SPECIFICATION

4.1 Java call trees

The tool for the generation of the raw call tree data, java-callgraph, writes its output as formatted text. The structure
follows this schema::

C:<qualified class name> <qualified class name>
M:<qualified class name>:<method> (<params>) (x)<qualified class name>:<method> (
—<params>)

java_call_tree uses the first character to distinguish classes and methods. The second qualifier, denoted as x, is not
used. Parameters are also cut off.

An example of the input format can be found in the resources folder of this project.

4.2 Java dependencies

Jjdepend.xmlui.JDepend writes XML. java_dependencies uses only the subset related to dependencies. It looks like
follows::

<JDepend>
<Packages>
<Package name = "some name" >
<DependsUpon>
<Package>qualified.package.name</Package>
<Package>another.package</Package>
</DependsUpon>
</Package>
</Packages>
</JDepend>

An example of the input format can be found in the resources folder of this project.

code,nalysisDocumentation, Release(0.1.5

4.3 Python dependencies

Dependencies of Python packages are determined using the ast module of the Python standard library. Modules of the
analyzed package are parsed into an AST (abstract syntax tree). Then the imports are extracted by walking the tree. In
this case no intermediate file format is required, but the results of the tree walk are directly processed.

8 Chapter 4. Technical Specification

CHAPTER
FIVE

5.1 code_analysis package

5.1.1 Submodules

5.1.2 code_analysis.java_call_tree module

5.1.3 code_analysis.java_dependencies module
5.1.4 code_analysis.python_dependencies module

5.1.5 Module contents

Top-level package for code_analysis.

CODE_ANALYSIS

code,nalysisDocumentation, Release(.1.5

10 Chapter 5. code_analysis

CHAPTER
SIX

CONTRIBUTING

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

6.1 Types of Contributions

6.1.1 Report Bugs

Report bugs at https://github.com/stbraun/code_analysis/issues.
If you are reporting a bug, please include:
* Your operating system name and version.
* Any details about your local setup that might be helpful in troubleshooting.

* Detailed steps to reproduce the bug.

6.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

6.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

6.1.4 Write Documentation

code_analysis could always use more documentation, whether as part of the official code_analysis docs, in docstrings,
or even on the web in blog posts, articles, and such.

11

https://github.com/stbraun/code_analysis/issues

code,nalysisDocumentation, Release(0.1.5

6.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/stbraun/code_analysis/issues.
If you are proposing a feature:

 Explain in detail how it would work.

» Keep the scope as narrow as possible, to make it easier to implement.

* Remember that this is a volunteer-driven project, and that contributions are welcome :)

6.2 Get Started!

Ready to contribute? Here’s how to set up code_analysis for local development.
1. Fork the code_analysis repo on GitHub.
2. Clone your fork locally:

$ git clone git@github.com:your_name_here/code_analysis.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ cd code_analysis/
$ pipenv shell
$ pipenv install --dev

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with nox:

$ flake8 code_analysis tests
$ make test or pytest
$ nox

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

12 Chapter 6. Contributing

https://github.com/stbraun/code_analysis/issues

code nalysisDocumentation, Release0.1.5

6.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:
1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/stbraun/
code_analysis/pull_requests and make sure that the tests pass for all supported Python versions.

6.4 Tips

To run a subset of tests:

’$ py.test tests.test_code_analysis

6.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push —--tags

Travis will then deploy to PyPI if tests pass.

6.3. Pull Request Guidelines 13

https://travis-ci.org/stbraun/code_analysis/pull_requests
https://travis-ci.org/stbraun/code_analysis/pull_requests

code,nalysisDocumentation, Release(.1.5

14 Chapter 6. Contributing

CHAPTER
SEVEN

HISTORY

7.1 0.1.0 (2021-04-04)

* First release on PyPL

7.2 0.1.3 (2021-04-05)

¢ Documentation enhanced.

15

code,nalysisDocumentation, Release(.1.5

16 Chapter 7. History

CHAPTER
EIGHT

INDICES AND TABLES

* genindex
¢ modindex

¢ search

17

code,nalysisDocumentation, Release(.1.5

18 Chapter 8. Indices and tables

PYTHON MODULE INDEX

C

code_analysis, 9

19

code,nalysisDocumentation, Release(.1.5

20 Python Module Index

INDEX

C

code_analysis
module, 9

M

module
code_analysis, 9

21

	code_analysis
	Features
	Credits

	Installation
	Stable release
	From sources

	Usage
	java_call_tree
	java_dependencies
	python_dependencies

	Technical Specification
	Java call trees
	Java dependencies
	Python dependencies

	code_analysis
	code_analysis package

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips
	Deploying

	History
	0.1.0 (2021-04-04)
	0.1.3 (2021-04-05)

	Indices and tables
	Python Module Index
	Index

